Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 206(2): e0033723, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38299858

RESUMO

Genome sequencing has demonstrated that Staphylococcus aureus encodes arginine biosynthetic genes argDCJBFGH synthesizing proteins that mediate arginine biosynthesis using glutamate as a substrate. Paradoxically, however, S. aureus does not grow in a defined, glutamate-replete medium lacking arginine and glucose (CDM-R). Studies from our laboratory have found that specific mutations are selected by S. aureus that facilitate growth in CDM-R. However, these selected mutants synthesize arginine utilizing proline as a substrate rather than glutamate. In this study, we demonstrate that the ectopic expression of the argDCJB operon supports the growth of S. aureus in CDM-R, thus documenting the functionality of this pathway. Furthermore, suppressor mutants of S. aureus JE2 putA::Tn, which is defective in synthesizing arginine from proline, were selected on CDM-R agar. Genome sequencing revealed that these mutants had compensatory mutations within both spoVG, encoding an ortholog of the Bacillus subtilis stage V sporulation protein, and sarA, encoding the staphylococcal accessory regulator. Transcriptional studies document that argD expression is significantly increased when JE2 spoVG sarA was grown in CDM-R. Lastly, we found that a mutation in ahrC was required to induce argD expression in JE2 spoVG sarA when grown in an arginine-replete medium (CDM), suggesting that AhrC also functions to repress argDCJB in an arginine-dependent manner. In conclusion, these data indicate that the argDCJB operon is functional when transcribed in vitro and that SNPs within potential putative regulatory proteins are required to alleviate the repression.IMPORTANCEAlthough Staphylococcus aureus has the capability to synthesize all 20 amino acids, it is phenotypically auxotrophic for several amino acids including arginine. This work identifies putative regulatory proteins, including SpoVG, SarA, and AhrC, that function to inhibit the arginine biosynthetic pathways using glutamate as a substrate. Understanding the ultimate mechanisms of why S. aureus is selected to repress arginine biosynthetic pathways even in the absence of arginine will add to the growing body of work assessing the interactions between metabolism and S. aureus pathogenesis.


Assuntos
Ácido Glutâmico , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Ácido Glutâmico/metabolismo , Arginina/metabolismo , Proteínas de Bactérias/metabolismo , Fatores de Transcrição/metabolismo , Aminoácidos/metabolismo , Prolina/genética , Prolina/metabolismo , Regulação Bacteriana da Expressão Gênica
2.
Brain Res ; 1822: 148648, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37890574

RESUMO

Multiple sclerosis (MS) is an autoimmune disease characterized by inflammation, death or damage of oligodendrocytes, and axonal degeneration. Current MS treatments are non-curative, associated with undesired side-effects, and expensive, highlighting the need for expanded therapeutic options for patients. There is great interest in developing interventions using drugs or therapeutics to reduce symptom onset and protect pre-existing myelin. Metformin is a well-tolerated drug used to treat Type 2 diabetes that has pleiotropic effects in the central nervous system (CNS), including reducing inflammation, enhancing oligodendrogenesis, increasing the survival/proliferation of neural stem cells (NSCs), and increasing myelination. Here, we investigated whether metformin administration could improve functional outcomes, modulate oligodendrocyte precursor cells (OPCs), and reduce inflammation in a well-established mouse model of MS- experimental autoimmune encephalomyelitis (EAE). Male and female mice received metformin treatment at the time of EAE induction ("acute") or upon presentation of disease symptoms ("delayed"). We found that acute metformin treatment improved functional outcomes, concomitant with reduced microglia numbers and decreased dysmyelination. Conversely, delayed metformin treatment did not improve functional outcomes. Our findings reveal that metformin administration can improve EAE outcomes when administered before symptom onset in both sexes.


Assuntos
Diabetes Mellitus Tipo 2 , Encefalomielite Autoimune Experimental , Metformina , Esclerose Múltipla , Humanos , Camundongos , Feminino , Masculino , Animais , Encefalomielite Autoimune Experimental/tratamento farmacológico , Metformina/farmacologia , Inflamação/tratamento farmacológico , Gravidade do Paciente , Camundongos Endogâmicos C57BL
3.
Stem Cells Transl Med ; 12(6): 415-428, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37209417

RESUMO

Spinal cord injury (SCI) results in devastating patient outcomes with few treatment options. A promising approach to improve outcomes following SCI involves the activation of endogenous precursor populations including neural stem and progenitor cells (NSPCs) which are located in the periventricular zone (PVZ), and oligodendrocyte precursor cells (OPCs) found throughout the parenchyma. In the adult spinal cord, resident NSPCs are primarily mitotically quiescent and aneurogenic, while OPCs contribute to ongoing oligodendrogenesis into adulthood. Each of these populations is responsive to SCI, increasing their proliferation and migration to the site of injury; however, their activation is not sufficient to support functional recovery. Previous work has shown that administration of the FDA-approved drug metformin is effective at promoting endogenous brain repair following injury, and this is correlated with enhanced NSPC activation. Here, we ask whether metformin can promote functional recovery and neural repair following SCI in both males and females. Our results reveal that acute, but not delayed metformin administration improves functional outcomes following SCI in both sexes. The functional improvement is concomitant with OPC activation and oligodendrogenesis. Our data also reveal sex-dependent effects of metformin following SCI with increased activation of NSPCs in females and reduced microglia activation in males. Taken together, these findings support metformin as a viable therapeutic strategy following SCI and highlight its pleiotropic effects in the spinal cord.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Masculino , Feminino , Humanos , Microglia , Traumatismos da Medula Espinal/tratamento farmacológico , Neurônios , Medula Espinal
4.
Cells ; 11(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35269466

RESUMO

Spinal cord injury (SCI) affects millions of individuals worldwide. Currently, there is no cure, and treatment options to promote neural recovery are limited. An innovative approach to improve outcomes following SCI involves the recruitment of endogenous populations of neural stem cells (NSCs). NSCs can be isolated from the neuroaxis of the central nervous system (CNS), with brain and spinal cord populations sharing common characteristics (as well as regionally distinct phenotypes). Within the spinal cord, a number of NSC sub-populations have been identified which display unique protein expression profiles and proliferation kinetics. Collectively, the potential for NSCs to impact regenerative medicine strategies hinges on their cardinal properties, including self-renewal and multipotency (the ability to generate de novo neurons, astrocytes, and oligodendrocytes). Accordingly, endogenous NSCs could be harnessed to replace lost cells and promote structural repair following SCI. While studies exploring the efficacy of this approach continue to suggest its potential, many questions remain including those related to heterogeneity within the NSC pool, the interaction of NSCs with their environment, and the identification of factors that can enhance their response. We discuss the current state of knowledge regarding populations of endogenous spinal cord NSCs, their niche, and the factors that regulate their behavior. In an attempt to move towards the goal of enhancing neural repair, we highlight approaches that promote NSC activation following injury including the modulation of the microenvironment and parenchymal cells, pharmaceuticals, and applied electrical stimulation.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Astrócitos , Humanos , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/terapia
6.
Stem Cells Transl Med ; 9(12): 1509-1530, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32691994

RESUMO

Spinal cord injuries (SCIs) are associated with tremendous physical, social, and financial costs for millions of individuals and families worldwide. Rapid delivery of specialized medical and surgical care has reduced mortality; however, long-term functional recovery remains limited. Cell-based therapies represent an exciting neuroprotective and neuroregenerative strategy for SCI. This article summarizes the most promising preclinical and clinical cell approaches to date including transplantation of mesenchymal stem cells, neural stem cells, oligodendrocyte progenitor cells, Schwann cells, and olfactory ensheathing cells, as well as strategies to activate endogenous multipotent cell pools. Throughout, we emphasize the fundamental biology of cell-based therapies, critical features in the pathophysiology of spinal cord injury, and the strengths and limitations of each approach. We also highlight salient completed and ongoing clinical trials worldwide and the bidirectional translation of their findings. We then provide an overview of key adjunct strategies such as trophic factor support to optimize graft survival and differentiation, engineered biomaterials to provide a support scaffold, electrical fields to stimulate migration, and novel approaches to degrade the glial scar. We also discuss important considerations when initiating a clinical trial for a cell therapy such as the logistics of clinical-grade cell line scale-up, cell storage and transportation, and the delivery of cells into humans. We conclude with an outlook on the future of cell-based treatments for SCI and opportunities for interdisciplinary collaboration in the field.


Assuntos
Regeneração Nervosa/fisiologia , Neuroproteção/fisiologia , Traumatismos da Medula Espinal/terapia , Humanos , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia
7.
Brain Behav Immun Health ; 7: 100119, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34589876

RESUMO

Hypoxia-ischemia (HI) injury is a leading cause of neonatal death and long-term disability, and existing treatment options for HI offer only modest benefit. Early intervention with the drug metformin has been shown to promote functional improvement in numerous rodent models of injury and has pleiotropic cellular effects in the brain. We have previously shown that 1 week of metformin treatment initiated 24 â€‹h after HI in neonatal mice resulted in improved motor and cognitive performance, activation of endogenous neural precursor cells (NPCs), and increased oligodendrogenesis. While promising, a limitation to this work is that immediate pharmacological intervention is not always possible in the clinic. Herein, we investigated whether delaying metformin treatment to begin in the subacute phase post-HI would still effectively promote recovery. Male and female C57/BL6 mice received HI injury postnatally, and metformin treatment began 7 days post-HI for up to 4 weeks. Motor and cognitive performance was assessed across time using behavioural tests (cylinder, foot fault, puzzle box). We found that metformin improved motor and cognitive behaviour, decreased inflammation, and increased oligodendrocytes in the motor cortex. Our present findings demonstrate that a clinically relevant subacute metformin treatment paradigm affords the potential to treat neonatal HI, and that improved outcomes occur through modulation of the inflammatory response and oligodendrogenesis.

8.
Methods Mol Biol ; 1920: 219-246, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30737694

RESUMO

Reptiles (lizards, snakes, turtles, and crocodilians) are becoming increasingly popular as models for developmental investigations. In this review the leopard gecko, Eublepharis macularius, is presented as a reptilian model for embryonic and tissue regeneration studies. We provide details of husbandry and breeding and discuss aspects of embryonic nutrition, egg anatomy, and sex determination. We provide comprehensive protocols for transcardial perfusion, short-term anesthesia using the injectable anesthetic Alfaxan, and full-thickness cutaneous biopsy punches, used in geckos for the study of scar-free wound healing. We also provide modifications to three popular histological techniques (whole-mount histochemistry, immunohistochemistry, and double-label immunofluorescence) and provide details on bromodeoxyuridine (BrdU) labeling and immuno-detection.


Assuntos
Desenvolvimento Embrionário , Regeneração , Répteis/embriologia , Répteis/fisiologia , Animais , Biomarcadores , Biópsia , Cruzamento , Feminino , Imunofluorescência , Imuno-Histoquímica , Lagartos , Masculino
9.
J Anat ; 227(5): 596-610, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26360824

RESUMO

Cutaneous wounds heal with two possible outcomes: scarification or near-perfect integumentary restoration. Whereas scar formation has been intensively investigated, less is known about the tissue-level events characterising wounds that spontaneously heal scar-free, particularly in non-foetal amniotes. Here, a spatiotemporal investigation of scar-free cutaneous wound healing following full-thickness excisional biopsies to the tail and body of leopard geckos (Eublepharis macularius) is provided. All injuries healed without scarring. Cutaneous repair involves the development of a cell-rich aggregate within the wound bed, similar to scarring wounds. Unlike scar formation, scar-free healing involves a more rapid closure of the wound epithelium, and a delay in blood vessel development and collagen deposition within the wound bed. It was found that, while granulation tissue of scarring wounds is hypervascular, scar-free wound healing conspicuously does not involve a period of exuberant blood vessel formation. In addition, during scar-free wound healing the newly formed blood vessels are typically perivascular cell-supported. Immunohistochemistry revealed widespread expression of both the pro-angiogenic factor vascular endothelial growth factor A and the anti-angiogenic factor thrombospondin-1 within the healing wound. It was found that scar-free wound healing is an intrinsic property of leopard gecko integument, and involves a modulation of the cutaneous scar repair program. This proportional revascularisation is an important factor in scar-free wound healing.


Assuntos
Cicatriz/fisiopatologia , Cicatrização/fisiologia , Ferimentos e Lesões/fisiopatologia , Animais , Biomarcadores/metabolismo , Biópsia por Agulha , Cicatriz/patologia , Epitélio/irrigação sanguínea , Epitélio/metabolismo , Epitélio/patologia , Imuno-Histoquímica , Lagartos/fisiologia , Neovascularização Fisiológica/fisiologia , Regeneração/fisiologia , Cauda , Trombospondina 1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia , Fator de von Willebrand/metabolismo
10.
Physiol Biochem Zool ; 86(6): 631-44, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24241061

RESUMO

Abstract Caudal autotomy-the ability to self-detach the tail-is a dramatic adaptation common to many structural-grade lizards. For most species, tail loss is followed by the equally dramatic phenomenon of tail regeneration. Here we review the anatomy and histology of caudal autotomy and regeneration in lizards, drawing heavily from research published over the past 2 decades. The autotomous tail is characterized by various structural adaptations, which act to minimize blood loss and trauma to adjacent tissues. The early phase of wound healing involves a leukocytic response but limited inflammation. Reepithelialization via a specialized wound epithelium is not only critical for scar-free healing but also necessary for subsequent tissue patterning and regenerative outgrowth. Regeneration begins with the formation of the blastema, a mass of proliferating mesenchymal-like cells. As the blastema expands, it is invaded by blood vessels and the spinal cord. Whereas the replacement tail outwardly resembles the original appendage, it differs in several notable respects, including the tissue composition and organization of the skeleton, muscular system, and spinal cord. Increasingly, the lizard tail is being recognized among biomedical scientists as an important model for the study of wound healing and multitissue restoration.


Assuntos
Lagartos/anatomia & histologia , Regeneração/fisiologia , Cauda/anatomia & histologia , Cicatrização/fisiologia , Animais , Epitélio/fisiologia , Lagartos/fisiologia , Cauda/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA